Skip to article frontmatterSkip to article content

Definition

rotf=×f=(x1xn)×(f1fn)\text{rot}f = \vec \nabla \times f = \begin{pmatrix}\frac{\partial}{\partial x_{1}}\\ \vdots \\ \frac{\partial}{\partial x_{n}}\end{pmatrix} \times \begin{pmatrix}f_{1} \\ \vdots \\ f_{n}\end{pmatrix}

Übung

Untersuchen von

f(x,y,z)=(2x2yzy2+xzxy2zx2yxyz22yz)f(x,y,z) = \begin{pmatrix} 2x^{2}yz \\ y^{2}+xz-xy^{2}z \\ x^{2}y-xyz^{2}-2yz\end{pmatrix}

auf Divergenz und Rotation

Lösung
  • Divergenz ist 0
  • rotf=(x2xz22zx+xy22xy+yz2+2x2yzy2z2x2z)\text{rot}f = \begin{pmatrix} x^{2}-xz^{2}-2z-x+xy^{2} \\ -2xy+yz^{2}+2x^{2}y \\ z-y^{2}z-2x^{2}z \end{pmatrix}